Schottky Rectifier, 2 x 20 A

Base

cathode

1

Anode C

2 Q common

2

cathode

Common 3

2 x 20 A

60 V

ဂ် Anode

FEATURES

- 150 °C T_J operation
- · Center tap configuration
- Low forward voltage drop
- · High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- · Guard ring for enhanced ruggedness and long term reliability
- Lead (Pb)-free ("PbF" suffix)
- · Designed and qualified for industrial level

DESCRIPTION

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 150 °C junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{F(AV)}	Rectangular waveform	40	A		
V _{RRM}		60	V		
I _{FSM}	$t_p = 5 \ \mu s \ sine$	1000	А		
V _F	20 Apk, T _J = 125 °C (per leg)	0.58	V		
TJ	Range	- 55 to 150	°C		

VOLTAGE RATINGS					
PARAMETER	SYMBOL	48CTQ060PbF	UNITS		
Maximum DC reverse voltage	V _R	60	M		
Maximum working peak reverse voltage	V _{RWM}	60	v		

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average per leg	I _{F(AV)}	50 % duty cycle at T_{C} = 111 °C, rectangular waveform		20	
See fig. 5 per device				40	А
Maximum peak one cycle non-repetitive	1	5 μs sine or 3 μs rect. pulse 10 ms sine or 6 ms rect. pulse Following any rated load condition and with rated V _{RRM} applied	1000		
surge current per leg See fig. 7	I _{FSM}			260	
Non-repetitive avalanche energy per leg		T _J = 25 °C, I _{AS} = 1.50 A, L = 11.5 mH		13	mJ
Repetitive avalanche current per leg	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical		1.50	A

* Pb containing terminations are not RoHS compliant, exemptions may apply

TO-220AB

PRODUCT SUMMARY

I_{F(AV)}

 V_{R}

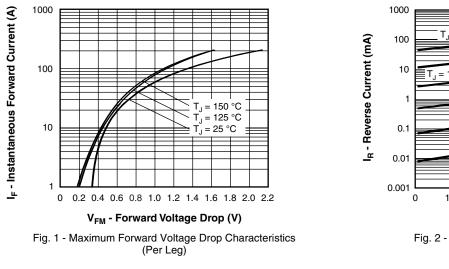
COMPLIANT

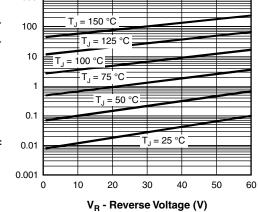
Vishay High Power Products

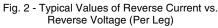
48CTQ060PbF

Vishay High Power Products Schottky Rectifier, 2 x 20 A

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
		20 A	T.I = 25 °C	0.61	
Maximum forward voltage drop per leg	V _{FM} ⁽¹⁾	40 A	1j=25 C	0.83	v
See fig. 1	VFM ('')	20 A	T 105 %C	0.58	v
		40 A	T _J = 125 °C	0.75	
Maximum reverse leakage current per leg	I _{BM} ⁽¹⁾	$T_J = 25 \ ^{\circ}C$		2	m A
See fig. 2	IRM (''	I_{RM} ⁽¹⁾ $V_{R} = Rated V_{R}$	89	mA	
Threshold voltage	V _{F(TO)}	$T_{J} = T_{J}$ maximum		0.37	V
Forward slope resistance	r _t			8.26	mΩ
Maximum junction capacitance per leg	CT	V_R = 5 V_{DC} (test signal range 100 kHz to 1 MHz) 25 °C		1220	pF
Typical series inductance per leg	L _S	Measured lead to lead 5 mm from package body		8.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R		10 000	V/µs


Note


 $^{(1)}\,$ Pulse width < 300 $\mu s,$ duty cycle < 2 %


THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	•	T _J , T _{Stg}		- 55 to 150	°C
Maximum thermal resistance, junction to case per leg		5		2.0	
Maximum thermal resistance, junction to case per package		R _{thJC}	DC operation	1.0	°C/W
Typical thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.50	
				2	g
Approximate weight				0.07	oz.
Manuation to some	minimum			6 (5)	kgf ⋅ cm
Mounting torque	maximum			12 (10)	(lbf ⋅ in)
Marking device			Case style TO-220AB	48CT	Q060

Schottky Rectifier, 2 x 20 A Vishay High Power Products

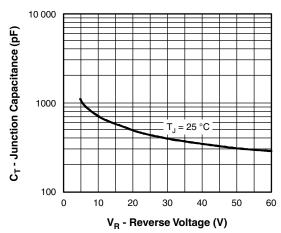
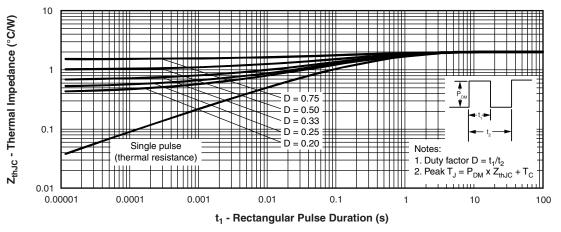
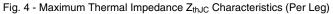
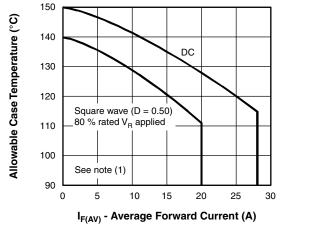
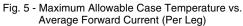
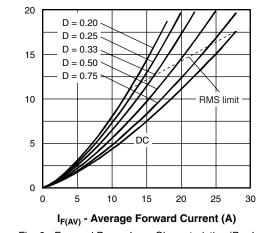
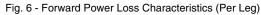




Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)


48CTQ060PbF


Vishay High Power Products


Schottky Rectifier, 2 x 20 A


Average Power Loss (W)

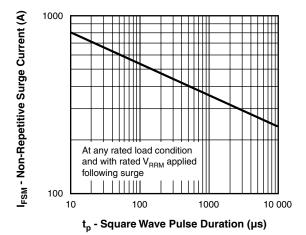


Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

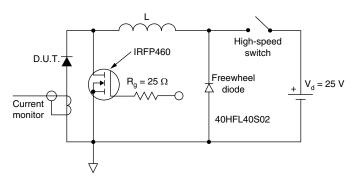
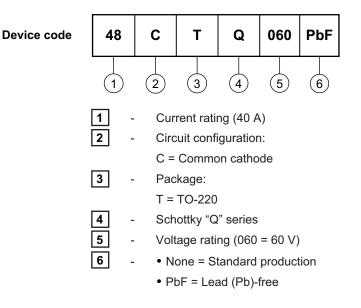


Fig. 8 - Unclamped Inductive Test Circuit

Note


⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward power loss = I_{F(AV)} \times V_{FM} at (I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 - D); I_R at V_{R1} = 10 V$

Schottky Rectifier, 2 x 20 A Vishay High Power Products

ORDERING INFORMATION TABLE

Tube standard pack quantity: 50 pieces

LINKS TO RELATED DOCUMENTS			
Dimensions http://www.vishay.com/doc?95222			
Part marking information	http://www.vishay.com/doc?95225		

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.